PRODUCTS IN TOPOLOGY

Abstract
Examples are provided which demonstrate that in many cases topological products do not behave as they should. A new product for topological spaces is defined in a natural way by means of interior covers. In general this is no longer a topological space but can be interpreted as categorical product in a category larger than Top. For compact spaces the new product coincides with the old. There is a converse: For symmetric topological spaces X the following conditions are equivalent: (1) X is compact; (2) for each cardinal k the old and the new product Xk coincide; (3) for each compact Hausdorff space Y the old and the new product X x Y coincide. The new product preserves paracompactness, zero-dimensionality (in the covering sense), the Lindelöf property, and regular-closedness. With respect to the new product, a space is N-complete iff it is zerodimensional and R-complete.

This publication has 13 references indexed in Scilit: