An Entropic Solver for Ideal Lagrangian Magnetohydrodynamics
- 1 September 1999
- journal article
- Published by Elsevier in Journal of Computational Physics
- Vol. 154 (1) , 65-89
- https://doi.org/10.1006/jcph.1999.6300
Abstract
No abstract availableKeywords
This publication has 11 references indexed in Scilit:
- Structure des systèmes de lois de conservation en variables lagrangiennesComptes Rendus de l'Académie des Sciences - Series I - Mathematics, 1999
- Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation LawsJournal of Computational Physics, 1997
- A High-Order Godunov-Type Scheme for Shock Interactions in Ideal MagnetohydrodynamicsSIAM Journal on Scientific Computing, 1997
- Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de LagrangeComptes Rendus de l'Académie des Sciences - Series I - Mathematics, 1997
- Shock-Capturing Approach and Nonevolutionary Solutions in MagnetohydrodynamicsJournal of Computational Physics, 1996
- Numerical Approximation of Hyperbolic Systems of Conservation LawsPublished by Springer Nature ,1996
- An Approximate Riemann Solver for Ideal MagnetohydrodynamicsJournal of Computational Physics, 1994
- The small amplitude magnetohydrodynamic Riemann problemPhysics of Fluids B: Plasma Physics, 1993
- The role of intermediate shocks in magnetic reconnectionGeophysical Research Letters, 1992
- An upwind differencing scheme for the equations of ideal magnetohydrodynamicsJournal of Computational Physics, 1988