Regulation by Ca2+ and Inositol 1,4,5-Trisphosphate (Insp3) of Single Recombinant Type 3 Insp3 Receptor Channels
Open Access
- 30 April 2001
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 117 (5) , 435-446
- https://doi.org/10.1085/jgp.117.5.435
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is an endoplasmic reticulum–localized Ca2+-release channel that controls complex cytoplasmic Ca2+ signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 InsP3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of ∼3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 μM under saturating (10 μM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP3 concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of ∼4. InsP3 activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3–induced Ca2+ release and low gain Ca2+–induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.Keywords
This publication has 98 references indexed in Scilit:
- Inositol 1,4,5-Trisphosphate (InsP3) and Calcium Interact to Increase the Dynamic Range of InsP3 Receptor-dependent Calcium SignalingThe Journal of general physiology, 1997
- Inositol 1,4,5-Trisphosphate and Calcium Regulate the Calcium Channel Function of the Hepatic Inositol 1,4,5-Trisphosphate ReceptorPublished by Elsevier ,1997
- Type-I, Type-II and Type-III Inositol 1,4,5-Trisphosphate Receptor Co-Immunoprecipitation as Evidence for the Existence of Heterotetrameric Receptor ComplexesBiochemical and Biophysical Research Communications, 1995
- Type I, II, and III Inositol 1,4,5-Trisphosphate Receptors Are Unequally Susceptible to Down-regulation and Are Expressed in Markedly Different Proportions in Different Cell TypesJournal of Biological Chemistry, 1995
- Monoclonal antibodies distinctively recognizing the subtypes of inositol 1,4,5‐trisphosphate receptor: Application to the studies on inflammatory cellsFEBS Letters, 1994
- Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium.The Journal of general physiology, 1994
- Intracellular calcium waves generated by ins(1,4,5)P3-dependent mechanismsCell Calcium, 1993
- Calcium‐induced degradation of the Inositol (1,4,5)‐trisphosphate receptor/Ca2+‐channelFEBS Letters, 1993
- Calcium and inositol 1,4,5-triphosphate receptors: a complex relationshipTrends in Biochemical Sciences, 1992
- Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellumNature, 1991