Effect of aeration on antibiotic production byStreptomyces clavuligerus

Abstract
During the rapid growth phase ofStreptomyces clavuligerus in a 10 litre fermentor, the level of dissolved oxygen (DO) was found to drop to almost zero for a period of approximately 10 h, delaying the appearance of and lowering the production of the antibiotic cephamycin C. Controlling the DO at either 50% or 100% throughout the fermentation did not significantly alter the specific growth rate of the culture, but did elevate final antibiotic levels two- and three-fold respectively. The improved oxygen availability affected antibiotic production both by increasing the rate of specific cephamycin C bisosynthesis and by maintaining this higher rate throughout the production period. These results demonstrate that controlling dissolved oxygen levels close to saturation during periods of rapid growth markedly improves the efficiency and duration of cephamycin C biosynthesis inS. clavuligerus.