Limited Downlink Network Coordination in Cellular Networks

Abstract
We investigate the downlink throughput of cellular systems where groups of M antennas - either co-located or spatially distributed - transmit to a subset of a total population of K > M users in a coherent, coordinated fashion in order to mitigate intercell interference. We consider two types of coordination: the capacity-achieving technique based on dirty paper coding (DPC), and a simpler technique based on zero-forcing (ZF) beamforming with per-antenna power constraints. During a given frame, a scheduler chooses the subset of the K users in order to maximize the weighted sum rate, where the weights are based on the proportional-fair scheduling algorithm. We consider the weighted average sum throughput among K users per cell in a multi-cell network where coordination is limited to a neighborhood of M antennas. Consequently, the performance of both systems is limited by interference from antennas that are outside of the M coordinated antennas. Compared to a 12-sector baseline which uses the same number of antennas per cell site, the throughput of ZF and DPC achieve respective gains of 1.5 and 1.75.

This publication has 8 references indexed in Scilit: