The phloem

Abstract
Perspective: evolution of the phloem With increase in the size of plants over geologic time, efficient systems for the transport of water and minerals (primary and secondary xylem) as well as for photosynthates, hormones and other substances (primary and secondary phloem) evolved (see Chapter 1). The protoplasts of differentiating conducting cells of the xylem (tracheids and vessel members) were eliminated through autolysis, thus providing at functional maturity open, but non-living, passageways through which water could be pulled upward and out through the leaves by the force of transpiration (see Chapter 11). Evolution in the phloem took a different course. An open, but living, system of interconnected tubes, formed by overlapping sieve cells in gymnosperms (and more primitive vascular plants), and superposed sieve tube members forming sieve tubes in angiosperms evolved. The protoplasts of sieve elements became degraded, losing the nucleus, tonoplast (vacuolar membrane), and all other organelles except some mitochondria, plastids, and endoplasmic reticulum. In conifers and dicotyledons, distinctive plastids and P-proteins (phloem proteins) evolved and, with the mitochondria and ER, became located peripherally in the cells. Concurrently, plasmodesmata which connected contiguous sieve tube members were replaced by open pores, thus forming a symplastic system of essentially unimpeded passageways (Ehlers et al., 2000) through which photosynthate and other molecular substances were transported throughout the plant. Although living, but because of the loss of the nucleus, the sieve elements were no longer able to control their genetic and metabolic activities.