Detection of Infectious Bronchitis Virus by Real-Time Reverse Transcriptase–Polymerase Chain Reaction and Identification of a Quasispecies in the Beaudette Strain
- 1 July 2003
- journal article
- Published by American Association of Avian Pathologists (AAAP) in Avian Diseases
- Vol. 47 (3) , 718-724
- https://doi.org/10.1637/6075
Abstract
In this report, we describe a real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) diagnostic test for infectious bronchitis virus (IBV) with the use of fluorescence resonance energy transfer (FRET) technology. Two primers that amplify a 383-base pair product between nucleotide positions 703 and 1086 relative to the start codon for the S1 gene of the Massachusetts 41 virus were designed and used to amplify the Beaudette, Massachusetts 41, Florida 18288, Connecticut, Iowa 97, Arkansas DPI, CA/NE95/99, DE/072/ 92, and GA/0470/98 strains of IBV. The primers were specific and did not amplify New Castle disease virus, Mycoplasma spp., or infectious laryngotracheitis virus. For RRT-PCR by FRET, an anchor probe conjugated to fluorescein and a detection probe conjugated to a red fluorophore were designed to anneal to a hypervariable region within the 383-base pair product. The level of sensitivity was 1 x 10(4) RNA molecules used as starting template. After amplification, a melting curve analysis was conducted to specifically identify IBV types. Because of sequence differences in the annealing position of the detection probe, the Arkansas, Connecticut, Beaudette, and Massachusetts 41 strains could be differentiated. No fluorescence was observed for the DE/072/ 92 and GA/0470/98 viruses with the anchor and detection probes. When the Beaudette strain was examined, two melting peaks were observed at 44 C and 51 C, indicating a quasispecies in that laboratory strain of IBV. Routine typing of vaccine strains of IBV was possible with this technology, but high standard deviations associated with the melting curve analysis of the FRET probes described herein made it difficult to use this test reliably for routine typing of IBV field isolates.Keywords
This publication has 10 references indexed in Scilit:
- Molecular Characterization of Infectious Bronchitis Virus Isolates Foreign to the United States and Comparison with United States IsolatesPublished by JSTOR ,2001
- Emergence of Subtype Strains of the Arkansas Serotype of Infectious Bronchitis Virus in Delmarva Broiler ChickensPublished by JSTOR ,2000
- Preliminary studies on feline coronavirus distribution in naturally and experimentally infected catsResearch in Veterinary Science, 2000
- Homogeneous Multiplex Genotyping of Hemochromatosis Mutations with Fluorescent Hybridization ProbesThe American Journal of Pathology, 1998
- Serotype Identification of Avian Infectious Bronchitis Virus by RT-PCR of the Peplomer (S-1) GenePublished by JSTOR ,1998
- Quasispecies Development by High Frequency RNA Recombination during MHV PersistencePublished by Springer Nature ,1998
- Further Development and Use of a Molecular Serotype Identification Test for Infectious Bronchitis VirusPublished by JSTOR ,1997
- Differentiation of Infectious Bronchitis Virus Serotypes Using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism AnalysisPublished by JSTOR ,1993