Interleukin-3 facilitates glucose transport in a myeloid cell line by regulating the affinity of the glucose transporter for glucose: involvement of protein phosphorylation in transporter activation
- 1 February 1995
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 305 (3) , 843-851
- https://doi.org/10.1042/bj3050843
Abstract
Growth factors promote cell survival and proliferation by activating signal transduction pathways that result in progression through the cell cycle and differential gene expression. Uptake of simple sugars needed for basal cell metabolism, and for macromolecular synthesis necessary for cell growth and proliferation, is thought to follow as a consequence of signal transduction to the nucleus. However, in the presence of inhibitors of DNA synthesis and respiration, growth factors can still promote cell survival responses in the short term, raising the possibility that they may also regulate critical membrane and cytosolic processes necessary for cell survival. We have tested this hypothesis directly by investigating the role of the haemopoietic growth factor, interleukin-3 (IL-3), in the regulation of glucose transport in the bone marrow-derived cell line, 32D. We show that IL-3 promotes glucose transport by actively maintaining the affinity of the plasma membrane, glucose transporter for glucose (Km 1.35 +/- 0.15 mM, n = 4). Withdrawal of IL-3 for 1 h resulted in reduced affinity for glucose (Km 2.96 +/- 0.28 mM, n = 4) without an associated change in Vmax. Furthermore, glucose transporter molecules as the cell surface, as determined by cytochalasin B binding to isolated plasma membranes, did not differ significantly between control and IL-3-treated cells. Inhibition of DNA synthesis with mitomycin C or with the respiratory poison, sodium azide, did not affect the ability of IL-3 to promote glucose transport. In contrast, the tyrosine kinase inhibitors genistein and erbstatin extensively inhibited control and IL-3-stimulated glucose transport, some preference of IL-3-stimulated glucose transport, some preference for IL-3-stimulated responses being observed at low inhibitor concentrations. The light-activated protein kinase C inhibitor, calphostin C, also inhibited control and IL-3-stimulated glucose transport but without preference for IL-3 responses. Additionally, the tyrosine phosphatase inhibitor, orthovanadate, stimulated control and IL-3-dependent glucose transport by 50-80% while the protein kinase A inhibitor, KT5720, inhibited glucose transport by about 20% at plateau values. These results indicate that IL-3 is involved in continuous maintenance of glucose transporter activity by a mechanism that involves tyrosine kinases and protein kinase C, and demonstrate that this activation is not dependent on respiration or signal transduction to the nucleus.Keywords
This publication has 43 references indexed in Scilit:
- Insulin‐induced translocation of glucose transporters in rat hindlimb musclesFEBS Letters, 1987
- The glucose transporter in human fibroblasts is phosphorylated in response to phorbol ester but not in response to growth factorsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1987
- Reassessment of insulin effects on the Vmax and Km values of hexose transport in isolated rat epididymal adipocytes.Journal of Biological Chemistry, 1987
- Post-translational insertion of fragment of the glucose transporter into microsomes requires phosphoanhydride bond cleavageNature, 1986
- Phosphorylation of the glucose transporter in vitro and in vivo by protein kinase CNature, 1985
- Increased affinity predominates in insulin stimulation of glucose transport in the adipocyte.Journal of Biological Chemistry, 1985
- Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assaysJournal of Immunological Methods, 1983
- Kinetic Parameters Of Hexose Transport In Hybrids Between Malignant And Non-Malignant CellsJournal of Cell Science, 1983
- Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines.Proceedings of the National Academy of Sciences, 1983
- Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site.Proceedings of the National Academy of Sciences, 1980