n -type organic field-effect transistor based on interface-doped pentacene

Abstract
The realization of an n -type pentacene field-effect transistor based on interface-doped pentacene is demonstrated, laying a headstone for an organic complementary-metal–oxide–semiconductor technology. The doping is performed by depositing traces of calcium onto the gate insulator before applying the organic semiconductor. Electron field-effect mobilities of 0.19cm2V1s1 are achieved. The field effect, i.e., the electron accumulation behavior, is studied by impedance spectroscopy and charge measurements on a metal–insulator–semiconductor (MIS) diode. A good correlation between the physical properties of the transistor and the MIS diode can be reported. A temporal dynamics and a hysteresislike accumulation behavior are observed, both explainable by the influence of deep electron traps.