Characteristics of Alumina Diffusion Barrier Films on Hastelloy

Abstract
The diffusion behavior of elements constituting Hastelloy C-276 (C, Si, Mn, Co, W, Fe, Cr, Mo, and Ni) in alumina films was investigated using secondary ion mass spectroscopy. The films were deposited by ion-beam-assisted deposition and annealed in vacuum over a temperature range of 500–1000 °C. Characterization of film microstructure was performed using transmission electron microscopy and selected area diffraction analyses. The films were predominantly amorphous with alumina nanocrystallites nonuniformly dispersed throughout the volume both before and after annealing. A relatively wide interface region between the Hastelloy substrate and alumina film was formed in the as-deposited sample due to ion beam mixing. No diffusion of any of the substrate elements was observed after annealing, except for Mn, Cr, and Ni. The impurity depth distributions consisted of two components, which differed by several orders of magnitude with respect to diffusion coefficient and solubility. Activation energies and temperature dependencies of the diffusion coefficients were determined, and a diffusion mechanism was discussed.