Fractal dimension characterizes seizure onset in epileptic patients

Abstract
We present a quantitative method for identifying the onset of epileptic seizures in the intracranial electroencephalogram (IEEG), a process which is usually done by expert visual inspection, often with variable results. We performed a fractal dimension (FD) analysis on IEEG recordings obtained from implanted depth and strip electrodes in patients with refractory mesial temporal lobe epilepsy (MTLE) during evaluation for epilepsy surgery. Results demonstrate a reproducible and quantifiable pattern that clearly discriminates the ictal (seizure) period from the pre-ictal (pre-seizure) period. This technique provides an efficient method for IEEG complexity characterization, which may be implemented in real time. Additionally, large volumes of IEEG data can be analyzed through compact records of FD values, achieving data compression on the order of one hundred fold. This technique is promising as a computational tool for determination of electrographic seizure onset in clinical applications.

This publication has 19 references indexed in Scilit: