Dynamics of a vortex filament in a shear flow

Abstract
Motions of a single vortex filament in a background flow are studied by numerical simulation of a set of model equations. The model, which in essence is due to Hama, treats the self-interaction of the filament through the so-called ‘localized-induction approximation’ (LIA). Interaction with the prescribed background field is treated by simply advecting the filament appropriately. We are particularly interested in elucidating the evolution of sinuous vortices such as the ‘wiggle’ seen by Breidenthal in the transition to three-dimensionality in the mixing layer. The model studied embodies two of the simplest ingredients that must enter into any dynamical explanation: induction and advection. For finite-amplitude phenomena we make contact with the theory of solitons on strong vortices developed by Betchov and Hasimoto. In a shear, solitons cannot exist, but solitary waves can, and their interactions with the shear are found to be key ingredients for an understanding of the behaviour of the vortex filament. When sheared, a soliton seems to act as a ‘nucleation site’ for the generation of a family of waves. Computed sequences are shown that display a remarkable morphological similarity to flow-visualization studies. The present application of fully nonlinear dynamics to a model presents an attractive alternative to the extrapolations from linearized stability theory applied to the full equations that have so far constituted the theoretical basis for understanding the experimental results.

This publication has 15 references indexed in Scilit: