Abstract
One-dimensional model of non-relativistic particles with inverse-square interaction potential known as Calogero-Sutherland Model (CSM) is shown to possess fractional statistics. Using the theory of Jack symmetric polynomial the exact dynamical density-density correlation function and the one-particle Green's function (hole propagator) at any rational interaction coupling constant $\lambda = p/q$ are obtained and used to show clear evidences of the fractional statistics. Motifs representing the eigenstates of the model are also constructed and used to reveal the fractional {\it exclusion} statistics (in the sense of Haldane's ``Generalized Pauli Exclusion Principle''). This model is also endowed with a natural {\it exchange } statistics (1D analog of 2D braiding statistics) compatible with the {\it exclusion} statistics. (Submitted to PRL on April 18, 1994)

This publication has 0 references indexed in Scilit: