NUCLEAR MATRIX ELEMENTS FOR DOUBLE BETA DECAY

Abstract
The neutrinoless double beta (0νββ) decay of atomic nuclei plays a key role in the search for massive Majorana neutrinos and their mass scale. To extract the necessary information from the measured data the nuclear-structure effects have to be accounted for by computation of the associated nuclear matrix elements (NME's). In this article the NME's for the light-neutrino exchange mechanism are discussed. They are computed by using the proton-neutron quasiparticle random-phase approximation (pnQRPA). Recent developments in this field relate to the handling of the nucleon-nucleon short-range correlations and independent experimental probes of the wave functions relevant for the NME's.