Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems
Abstract
For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric $N$--mode Gaussian states, for arbitrary $N$. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three--mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous continuous-variable analogs of both the GHZ and the $W$ states of three qubits: in continuous-variable systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: