Complexity of Scheduling under Precedence Constraints

Abstract
Precedence constraints between jobs that have to be respected in every feasible schedule generally increase the computational complexity of a scheduling problem. Occasionally, their introduction may turn a problem that is solvable within polynomial time into an NP-complete one, for which a good algorithm is highly unlikely to exist. We illustrate the use of these concepts by extending some typical NP-completeness results and simplifying their correctness proofs for scheduling problems involving precedence constraints.