Cardioprotective-Mimetics Reduce Myocardial Infarct Size in Animals Resistant to Ischemic Preconditioning

Abstract
Background: Ischemic preconditioning (IPC) elicits two distinct windows of cardioprotection, an early phase that lasts for 1–2 h and a delayed phase that lasts for 24–72 h. However, there is conflicting data as to how long the heart is resistant to IPC-induced cardioprotection after the initial protection wanes, leading to the demonstration of IPC-resistance. This resistance to IPC appears to be dependent on the timing of the next IPC stimulus, the species of animals used and the model studied. Furthermore, the mechanisms responsible IPC-resistance are unknown. It is also important to demonstrate therapeutic interventions that will produce cardioprotection during this period of IPC-resistance. Methods and Results: To examine potential mechanisms responsible for acute IPC-induced resistance, the NHE-1 inhibitor EMD 85131 (2-methyl-5-methylsulfonyl-1-(1-pyrrollyl)-benzoylguanidine), which exerts its effects via mechanisms distinct from IPC, and the K ATP channel opener bimakalim, which bypasses the signaling mechanisms of IPC to directly open K ATP channels, were examined in a canine model of IPC-resistance. One 10 min. IPC stimulus followed by 10 min. of reperfusion produced a significant reduction in IS/AAR compared to Control (7.1 ± 2.6% versus 26.0 ± 6.2%; P < 0.05). However, IPC did not significantly protect the myocardium if a 2 h reperfusion period occurred between the initial IPC stimulus and the subsequent prolonged (60 min) ischemic challenge (IS/AAR: 22.5 ± 4.8%: P > 0.05). Furthermore, hearts treated with IPC followed by 2 h of reperfusion were resistant to an additional IPC stimulus administered just prior to the subsequent 60 min. occlusion period (IS/AAR: 22.9 ± 3.2%: P > 0.05). In contrast, administration of the NHE-1 inhibitor EMD 85131 (IS/AAR: 7.4 ± 2.5%: P < 0.05) or the K ATP channel opener bimakalim (IS/AAR: 11.8 ± 2.4%: P < 0.05) both afforded significant cardioprotection when administered at 2 h of reperfusion in previously preconditioned canine hearts resistant to IPC. Conclusions: IPC resistance occurs in this canine model of ischemia-reperfusion injury. However, in spite of IPC resistance, hearts can still be pharmacologically protected by direct application of the K ATP channel opener bimakalim or the NHE inhibitor EMD 85131.

This publication has 24 references indexed in Scilit: