Abstract
In cardiac muscle, Ca2+ plays a key role in regulation of numerous processes, including generation of the action potential and development of tension. The entry of Ca2+ into the cell is regulated primarily by voltage-gated channels in the membrane. Until recently, it was felt that only one type of Ca2+ channel existed in cardiac ventricular muscle. Experiments reported here suggest that in isolated guinea pig ventricular myocytes, there are two distinct types of Ca2+ channels with markedly different activation thresholds, inactivation kinetics, and sensitivities to inorganic and organic Ca2+ channel blockers. The channels were also distinguished based on their response to increased frequency of clamping such that the current through the low-threshold channel decreased while that through the high-threshold channel increased. In a few cells, the current through both channels was enhanced by isoproterenol, a .beta.-adrenergic agonist, but only the high-threshold channel was enhanced by the Ca2+-channel agonist Bay K 8644. Thus, isolated guinea pig ventricular myocytes appear to have two types of Ca2+ channels distinguished by various criteria.