New model for media noise in thin-film magnetic recording media
- 8 December 1995
- proceedings article
- Published by SPIE-Intl Soc Optical Eng
- Vol. 2605, 29-38
- https://doi.org/10.1117/12.228241
Abstract
A new model, called the MicroTrack Model, has been developed for signal dependent transition noise and partial erasure that occurs in the readback signal from thin film magnetic disks. A track is modeled as being made up of a number of 'microtracks.' On each microtrack, the actual position of a transition in magnetization is offset by a random amount from the ideal position. This offset is chosen according to a cumulative probability distribution which is derived by scaling the magnetization profile function. Thus, the response of each microtrack is a randomly offset ideal transition response. The partial erasure effect is then easily added by assuming that magnetization transitions which occur on the same microtrack will eradicate each other if they are positioned too closely together. The final result is obtained by averaging the output of all of the microtracks. Three primary effects of media noise are position jitter, width variation, and amplitude degradation in the output pulses. The probability distributions of these effects as functions of the model parameters are presented. All of these effects result as consequences of the microtrack model. The relative amounts of the various effects are examined along with the way that they vary with the model's parameters. The autocorrelation function of the magnetization for the media noise is examined with and without partial erasure. In this way, the effect of partial erasure and its effect on the system can be examined.Keywords
This publication has 0 references indexed in Scilit: