Testosterone Dose-Dependently Increases Maximal Voluntary Strength and Leg Power, but Does Not Affect Fatigability or Specific Tension
- 1 April 2003
- journal article
- clinical trial
- Published by The Endocrine Society in Journal of Clinical Endocrinology & Metabolism
- Vol. 88 (4) , 1478-1485
- https://doi.org/10.1210/jc.2002-021231
Abstract
Testosterone supplementation in men increases fat-free mass, but whether measures of muscle performance, such as maximal voluntary strength, power, fatigability, or specific tension, are improved has not been determined. Furthermore, the extent to which these measures of muscle performance are related to testosterone dose or circulating concentration is unknown. To examine the relationship between testosterone dose and muscle performance, 61 healthy, eugonadal young men (aged 18–35 yr) were randomized to 1 of 5 groups, each receiving a long-acting GnRH agonist to suppress endogenous testosterone production plus weekly injections of 25, 50, 125, 300, or 600 mg testosterone enanthate for 20 wk. These doses produced mean nadir testosterone concentrations of 253, 306, 542, 1345, and 2370 ng/dl, respectively. Maximal voluntary muscle strength and fatigability were determined by a seated leg press exercise. Leg power was measured using a validated leg power instrument. Specific tension was estimated by the ratio of one repetition maximum muscle strength to thigh muscle volume determined by magnetic resonance imaging. Testosterone administration was associated with a dose-dependent increase in leg press strength and leg power, but muscle fatigability did not change significantly during treatment. Changes in leg press strength were significantly correlated with total (r = 0.46; P = 0.0005) and free (r = 0.38; P = 0.006) testosterone as was leg power (total testosterone: r = 0.38; P = 0.007; free testosterone: r = 0.35; P = 0.015), but not muscle fatigability. Serum IGF-I concentrations were not significantly correlated with leg strength, power, or fatigability. Specific tension did not change significantly at any dose. We conclude that the effects of testosterone on muscle performance are specific; it increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. The changes in leg strength and power are dependent on testosterone dose and circulating testosterone concentrations and exhibit a log-linear relationship with serum total and free testosterone. Failure to observe a significant testosterone dose relationship with fatigability suggests that testosterone does not affect this component of muscle performance and that different components of muscle performance are regulated by different mechanisms.Keywords
This publication has 23 references indexed in Scilit:
- Testosterone Replacement and Resistance Exercise in HIV-Infected Men With Weight Loss and Low Testosterone LevelsJAMA, 2000
- Rationale for anabolic therapy to facilitate rehabilitation in chronic obstructive pulmonary diseaseBailliere's Clinical Endocrinology and Metabolism, 1998
- Effects of Androgen Administration in Men with the AIDS Wasting SyndromeAnnals of Internal Medicine, 1998
- Exercise-induced changes in circulating growth factors with cyclic variation in plasma estradiol in womenJournal of Applied Physiology, 1997
- Testosterone Replacement in Older Hypogonadal Men: A 12-Month Randomized Controlled TrialJournal of Clinical Endocrinology & Metabolism, 1997
- Effect of Age on Muscle Hypertrophy Induced by Resistance TrainingThe Journals of Gerontology: Series A, 1996
- The Effects of Supraphysiologic Doses of Testosterone on Muscle Size and Strength in Normal MenNew England Journal of Medicine, 1996
- Skeletal muscle weakness in old ageMedicine & Science in Sports & Exercise, 1994
- Leg extensor power and functional performance in very old men and womenClinical Science, 1992
- A new method for measuring power output in a single leg extension: feasibility, reliability and validityEuropean Journal of Applied Physiology, 1990