Abstract
This study demonstrates that retinoic acid (RA), an active metabolite of vitamin A, can act to enhance regeneration of neurites, at physiologic concentrations, in vitro. Explanted fragments of mouse dorsal root ganglia (DRG) and mouse and human spinal cord (SC) were maintained, in vitro, for periods up to 11 d. Murine DRG neurons were exposed to RA concentrations ranging from 100 µM to 1 nM, whereas neurons within murine and human SC explants were exposed to 10 µM to 10 nM RA. Results show that RA significantly (P<0.001) increases mean neurite length but not neurite number. Specifically, murine DRG neurons showed increases in mean neurite length of 30.7% with individual explants showing increases of up to 133.5%. Murine and human SC showed mean enhancements of 43.4 and 58.1%, respectively, but did so at lower concentrations of RA. The results indicate that RA may play a potentially critical role in neuronal regeneration.