Abstract
Integral cross sections are presented for the scattering of He from H2 on the Gordon–Secrest potential. Results are reported at four energies, two above the first excited vibrational state and two above the second excited vibrational state. The energies are high enough that the vibrational transition from the ground to the first vibrational state is significant. Enough channels were included in the calculation to ensure that the integral cross sections are correct to two or three figures for the model potential used. A discussion of convergence is included. These accurate cross sections serve as test points for approximate calculations of vibrational energy transfer. The results are compared with the coupled states approximation, effective potential calculations, the semiclassical strong‐coupling correspondence principle, and classical trajectory calculations which had been reported earlier for this potential model by other workers. Results of the comparisons are discussed.