HOXB13 Homeodomain Protein Suppresses the Growth of Prostate Cancer Cells by the Negative Regulation of T-Cell Factor 4
- 1 May 2004
- journal article
- Published by American Association for Cancer Research (AACR) in Cancer Research
- Vol. 64 (9) , 3046-3051
- https://doi.org/10.1158/0008-5472.can-03-2614
Abstract
In prostate gland, HOXB13 is highly expressed from the embryonic stages to adulthood. However, the function of HOXB13 in normal cell growth and tumorigenesis is not yet known. We investigated the role of HOXB13 and mechanism by which it functions in HOXB13-negative cells. Expression of HOXB13 was forced in HOXB13-negative PC3 prostate cancer cells using a liposome-mediated gene transfer approach. Compared with the control clones, HOXB13-expressing PC3 cells exhibited significant inhibition of in vitro and in vivo cell growth with G1 cell cycle arrest mediated by the suppression of cyclin D1 expression. Because cyclin D1 is mainly regulated by β-catenin/T-cell factor (TCF), TCF-4 response element was used in a reporter gene transcription assay, demonstrating that HOXB13 significantly inhibits TCF-4-mediated transcriptional activity in both prostate and nonprostate cells. This inhibition occurred in a dose-responsive manner and was specific to TCF-4 response element. Western blot analysis demonstrated that HOXB13 down-regulates the expression of TCF-4 and its responsive genes, c-myc and cyclin D1. HOXB13 also suppressed the activity of natural c-myc promoter. This study suggests that HOXB13, a transcription factor, functions as a cell growth suppressor by negatively regulating the expression of TCF-4, which eventually provides negative signals for cell proliferation. This observation will provide valuable insight into the molecular basis of prostate tumorigenesis.Keywords
This publication has 33 references indexed in Scilit:
- Hoxb13knockout adult skin exhibits high levels of hyaluronan and enhanced wound healingThe FASEB Journal, 2003
- HOXB13 homeodomain protein is cytoplasmic throughout fetal skin developmentDevelopmental Dynamics, 2003
- Hoxb13 mutations cause overgrowth of caudal spinal cordand tail vertebraeDevelopmental Biology, 2003
- The HOX Homeodomain Proteins Block CBP Histone Acetyltransferase ActivityMolecular and Cellular Biology, 2001
- Selection of homeotic proteins for binding to a human DNA replication originJournal of Molecular Biology, 2000
- Modulation of the Human Homeobox Genes PRX-2 and HOXB13 in Scarless Fetal WoundsJournal of Investigative Dermatology, 1998
- Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1bThe EMBO Journal, 1998
- Expression of CD44 in premalignant and malignant Barrett's oesophagusHistopathology, 1998
- HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpointNature, 1997
- Molecular Therapy with Recombinant p53 Adenovirus in an Androgen-Independent, Metastatic Human Prostate Cancer ModelHuman Gene Therapy, 1996