On the difference of the Weil height and the N ron-Tate height
- 1 February 1976
- journal article
- research article
- Published by Springer Nature in Mathematische Zeitschrift
- Vol. 147 (1) , 35-51
- https://doi.org/10.1007/bf01214273
Abstract
No abstract availableKeywords
This publication has 13 references indexed in Scilit:
- HEIGHT ON FAMILIES OF ABELIAN VARIETIESPublished by World Scientific Pub Co Pte Ltd ,1996
- Ein Analogon des Satzes von Nagell-Lutz über die Torsion einer elliptischen Kurve.Journal für die reine und angewandte Mathematik (Crelles Journal), 1974
- ON TATE HEIGHT AND THE REPRESENTATION OF NUMBERS BY BINARY FORMSMathematics of the USSR-Izvestiya, 1974
- CYCLOTOMIC FIELDS AND MODULAR CURVESRussian Mathematical Surveys, 1971
- An elementary proof of the Riemann hypothesis for an elliptic curve over a finite fieldPacific Journal of Mathematics, 1971
- Die Néron-Tate'schen quadratischen formen auf der rationalen Punktgruppe einer elliptische KurveJournal of Number Theory, 1970
- ON TORSION POINTS OF ELLIPTIC CURVESMathematics of the USSR-Izvestiya, 1970
- THE REFINED STRUCTURE OF THE NÉRON-TATE HEIGHTMathematics of the USSR-Sbornik, 1970
- Diophantine Equations with Special Reference To Elliptic CurvesJournal of the London Mathematical Society, 1966
- Quasi-fonctions et Hauteurs sur les Varietes AbeliennesAnnals of Mathematics, 1965