Parameters governing the transfer of the genes for thymidine kinase and dihydrofolate reductase into mouse cells using metaphase chromosomes or DNA

Abstract
The conditions necessary to achieve high frequency transfer of the thymidine kinase and dihydrofolate reductase genes from hamster cells into mouse cells were investigated. Of the parameters examined, the length of adsorption time, input gene dosage, and treatment with dimethylsulfoxide (DMSO) were found to significantly alter the transfer frequency using either metaphase chromosomes or purified DNA as the transfer vehicle. With the mouse cell line as a recipient, the optimal adsorption period for DNA or chromosomes from MtxRIII cells was found to vary from 8 to 16 h in those experiments where the recipient cells were subsequently treated with DMSO. Without DMSO, similar frequencies could be obtained by extending the period of adsorption. Increasing the dosage of DNA or chromosomes resulted in an almost linear increase in the number of transformants. The optimal conditions for transfer did not significantly differ for the two genes studied. On the average, the optimal conditions yielded 1.5×103 transformants per 107 recipient cells with chromosomes; with DNA an average of only 60 transformants were observed. In general, DNA transformants grown in the absence of methotrexate were unstable; whereas, under the same conditions about 20% of the transformants from the chromosome experiments were stable.