Abstract
The Stone-Weierstrass theorem and its terminology are reviewed, and neural network architectures based on this theorem are presented. Specifically, exponential functions, polynomials, partial fractions, and Boolean functions are used to create networks capable of approximating arbitrary bounded measurable functions. A modified logistic network satisfying the theorem is proposed as an alternative to commonly used networks based on logistic squashing functions.

This publication has 8 references indexed in Scilit: