Abstract
There is evidence to show that the exhaust noise from gas turbines contains components which exceed the jet mixing noise at low jet velocities. This paper describes a theory developed to calculate the acoustic power produced by temperature fluctuations from the combustor entering the turbine. Using the turbine Mach numbers and flow directions at blade mid-height, and taking a typical value for the fluctuation in temperature, it has been possible to predict the acoustic power due to this mechanism for three different engines. In all three cases the agreement with measurements of acoustic power at low jet velocities is very good. Using a measured spectrum of the temperature fluctuation the prediction of the acoustic power spectrum agrees quite well with that measured.

This publication has 0 references indexed in Scilit: