The Design and Catalytic Properties of a Simplified Ribonuclease P RNA

Abstract
Ribonuclease P (RNase P) RNA is the catalytic moiety of the ribonucleoprotein enzyme that removes precursor sequences from the 5' ends of pre-transfer RNAs in eubacteria. Phylogenetic variation according to recently proposed secondary structure models was used to identify structural elements of the RNase P RNA that are dispensable for catalysis. A simplified RNase P RNA that consists only of evolutionarily conserved features was designed, synthesized, and characterized. Although the simplified RNA (Min 1 RNA) is only 263 nucleotides in length, in contrast to the 354 to 417 nucleotides of naturally occurring RNase P RNAs, its specificity of pre-tRNA cleavage is identical to that of the native enzymes. Moreover, the catalytic efficiencies of the Min 1 RNA and the native RNA enzymes are similar. These results focus the search for the catalytic elements of RNase P RNAs to their conserved structure.