Thalamocortical response transformation in the rat vibrissa/barrel system
- 1 February 1989
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 61 (2) , 311-330
- https://doi.org/10.1152/jn.1989.61.2.311
Abstract
1. Extracellular single-unit recordings and controlled whisker stimuli were used to compare response properties between cells in the "barreloids" of the thalamic ventrobasal complex and those in the cytochrome oxidase-rich centers of the "barrels" in the first somatic sensory cortex. Individual vibrissae were deflected alone or in paired combination involving the neuron's maximally excitatory whisker and an adjacent one in the same or neighboring whisker rows. Quantitative data were derived from 135 thalamocortical unit's (TCUs), 242 "regular-spike" barrel units (RSUs), and 16 "fast-spike" barrel units (FSUs) recorded in 26 normal adult rats. 2. Compared with TCUs, RSUs displayed lower rates of spontaneous activity and responded less vigorously to whisker stimuli. Proportionally, more than twice as many TCUs as RSUs responded in slowly adapting fashion to at least one angular direction of whisker displacement. Discharges of slowly adapting TCUs were approximately 3.5 times greater than those of slowly adapting RSUs. 3. Proportionally, about twice as many TCUs than RSUs responded selectively to whisker movements in different angular directions. 4. Cells in the thalamus responded more vigorously to a larger number of whiskers than RSUs in the cortex. Depending on the stimulus conditions, two to three times more TCUs than RSUs were excited by two or more whiskers. 5. Following displacement of an adjacent whisker, unit discharges to subsequent deflections of the maximally excitatory whisker were reduced in a time-dependent fashion. The time course of response suppression was similar in TCUs and RSUs, but inhibitory interactions between adjacent whiskers were observed much less often in the thalamus. A cyclic pattern of stimulus-evoked excitation/inhibition characterizes responses in the cortical barrels but is considerably less pronounced in the thalamic barreloids. 6. The presence and/or degree of response suppression depended on which adjacent whisker was stimulated and on the angular direction of that whisker's movement. For individual TCUs, some adjacent whiskers evoked inhibition, others did not. The vast majority of RSUs displayed response suppression to all adjacent whiskers. Unlike receptive fields of TCUs, those of RSUs have small--i.e., single-whisker--excitatory centers with potent and symmetrical inhibitory surrounds. 7. Fast-spike units in the barrels displayed the greatest spontaneous and stimulus-evoked activities and were the least selective for whisker movements at different angular directions. FSUs had the largest excitatory receptive fields; 100% responded to two or more vibrissae.(ABSTRACT TRUNCATED AT 400 WORDS)This publication has 41 references indexed in Scilit:
- Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sectionsJournal of Neurocytology, 1980
- Temporal integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeysJournal of Neurophysiology, 1980
- Differential contributions to coding of cutaneous vibratory information by cortical somatosensory areas I and IIJournal of Neurophysiology, 1980
- Spatial and temporal features of afferent inhibition of thalamocortical relay cellsJournal of Neurophysiology, 1979
- Identified neurons in mouse smi cortex which are postsynaptic to thalamocortical axon terminals: A combined golgi‐electron microscopic and degeneration studyJournal of Comparative Neurology, 1978
- Response properties of vibrissa units in rat SI somatosensory neocortexJournal of Neurophysiology, 1978
- The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidaseJournal of Comparative Neurology, 1977
- Extracellular and intracellular recordings from cat's cortical whisker projection area: thalamocortical response transformationJournal of Neurophysiology, 1977
- The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortexBrain Research, 1975
- Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input.Journal of Neurophysiology, 1967