Abstract
A a investigation was conducted to determine the nature of the chemical interactions of oxygen and sulfur with iron when surfaces are stationary and also during sliding in a vacuum environment. Various gases that contained sulfur, oxygen, or both were adsorbed to iron al 23 C. The gases included oxygen, hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Friction experiments were conducted with a hemispherical rider sliding on a rotating disk. An Auger cylindrical mirror analyzer was used to monitor the iron surface chemistry. The results of this study indicate that oxygen will completely displace sulfide films from iron surfaces. Organic thiols containing sulfur, such as methyl mercaptan, adsorb to an iron surface dissociatively. Only sulfur is detected on the iron surface. Sliding inhibits the formation of sulfide films on iron with the adsorption of hydrogen sulfide and methyl mercaptan. With oxygen and sulfur dioxide, the sliding process does not effect adsorption behavior.