Abstract
Although various properties of high polymers are known to depend on molecular weight, there appear to be no published data which show explicitly how the molecular weight of a rubber-like substance influences the modulus of high elasticity, even though a psychological perception of some such relationship has long existed. Also, the various expressions that have been derived by statistical methods contain molecular weight as a factor ranging from an inverse first power up to inverse higher fractional powers. Some time ago a need arose in this laboratory for estimating the average molecular weights of samples of polyisobutylene by a rapid procedure. Because of the slowness of polymer dissolution, methods based on measurements of the polymer in the dissolved state had to be ruled out and an investigation was, therefore, made of the rate of compression of a variety of samples in a Williams parallel-plate plastometer. It was found possible to render negligible the viscous component of deformation by using a sufficiently high compressive load and by limiting readings to an interval of about one minute. When the observed deformation values were plotted against the logarithm of time, straight lines were obtained. The slopes of the lines could be correlated, at least approximately, linearly with the reciprocal average molecular weights of the samples.

This publication has 0 references indexed in Scilit: