Effects of elevated CO2 and temperature on development in soybean and five weeds
- 1 January 1994
- journal article
- Published by Canadian Science Publishing in Canadian Journal of Plant Science
- Vol. 74 (1) , 43-50
- https://doi.org/10.4141/cjps94-009
Abstract
Developmental rates of soybean [Glycine max (L.) Merr. 'Braxton'], johnsongrass [Sorghum halepense (L.) Pers.], quackgrass [Elytrigia repens (L.) Nevski], redroot pigweed (Amaranthus retroflexus L.), sicklepod (Cassia obtusifolia L.), and velvetleaf (Abutilon theophrasti Medic.) were compared among plants grown in all combinations of two temperature levels (avg. day/night of 26/19 °C and 30/23 °C) and two CO2 levels (350 and 700 ppm). Neither temperature nor CO2 affected johnsongrass tillering rate, but plants began tillering earlier at higher temperatures. Adverse effects of higher temperatures on quackgrass development were alleviated by elevated CO2 conditions. Plastochron rate was higher at higher temperatures in all dicot species (soybean, redroot pigweed, sicklepod, and velvetleaf), and was higher at elevated CO2 in all dicots except velvetleaf. Calculating plastochron rates on a degree day basis removed differences between temperature treatments, but did not affect responses to CO2. Responses of dicot branch and branch leaf production to treatments varied among species. Branch production per day increased with higher temperatures in redroot pigweed, decreased with higher temperatures in sicklepod, and was unaffected by temperature in soybean. The relationship between main axis and branch developmental rates was altered by temperature in soybean, and by both temperature and CO2 in sicklepod, but was unaffected by either treatment in redroot pigweed. These results indicate that developmental responses to temperature and CO2 depend on both the species and the aspect of development being considered. Key words: Plastochron index, CO2 by temperature interaction, johnsongrass, quackgrass, redroot pigweed, sicklepod, velvetleafKeywords
This publication has 0 references indexed in Scilit: