NMR studies of a channel protein without membranes: Structure and dynamics of water-solubilized KcsA
- 28 October 2008
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 105 (43) , 16537-16542
- https://doi.org/10.1073/pnas.0805501105
Abstract
Structural studies of polytopic membrane proteins are often hampered by the vagaries of these proteins in membrane mimetic environments and by the difficulties in handling them with conventional techniques. Designing and creating water-soluble analogues with preserved native structures offer an attractive alternative. We report here solution NMR studies of WSK3, a water-soluble analogue of the potassium channel KcsA. The WSK3 NMR structure (PDB ID code 2K1E ) resembles the KcsA crystal structures, validating the approach. By more stringent comparison criteria, however, the introduction of several charged residues aimed at improving water solubility seems to have led to the possible formations of a few salt bridges and hydrogen bonds not present in the native structure, resulting in slight differences in the structure of WSK3 relative to KcsA. NMR dynamics measurements show that WSK3 is highly flexible in the absence of a lipid environment. Reduced spectral density mapping and model-free analyses reveal dynamic characteristics consistent with an isotropically tumbling tetramer experiencing slow (nanosecond) motions with unusually low local ordering. An altered hydrogen-bond network near the selectivity filter and the pore helix, and the intrinsically dynamic nature of the selectivity filter, support the notion that this region is crucial for slow inactivation. Our results have implications not only for the design of water-soluble analogues of membrane proteins but also for our understanding of the basic determinants of intrinsic protein structure and dynamics.Keywords
This publication has 25 references indexed in Scilit:
- Local and global structure of the monomeric subunit of the potassium channel KcsA probed by NMRBiochimica et Biophysica Acta (BBA) - Biomembranes, 2007
- Conformational dynamics of the KcsA potassium channel governs gating propertiesNature Structural & Molecular Biology, 2007
- A Model of Interdomain Mobility in a Multidomain ProteinJournal of the American Chemical Society, 2007
- How do helix–helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo‐oligomeric helical bundlesProtein Science, 2003
- Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structureJournal of Molecular Biology, 2000
- The Structure of the Potassium Channel: Molecular Basis of K + Conduction and SelectivityScience, 1998
- Structural Conservation in Prokaryotic and Eukaryotic Potassium ChannelsScience, 1998
- The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibrationJournal of Molecular Biology, 1997
- Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteinsJournal of the American Chemical Society, 1990
- Hydrophobic Organization of Membrane ProteinsScience, 1989