Progress on the NBS-LANL CW Microtron
- 1 April 1983
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Nuclear Science
- Vol. 30 (2) , 1391-1395
- https://doi.org/10.1109/tns.1983.4332540
Abstract
The NBS-LANL racetrack microtron (RTM) currently under construction at the National Bureau of Standards is a demonstration accelerator to determine the feasibility of, and to develop the technology necessary for building high-energy, high-current, continuous beam (CW) electron accelerators using beam recirculation through room temperature rf accelerating structures. Parameters of the RTM are: injection energy - 5 MeV; energy gain per pass - 12 MeV; number of passes - 15 or 16; final beam energy - 185-197 MeV; maximum current - 550 #x003BC;A; rf frequency - 2380 MHz. At present, the electron gun and 100 keV beam transport line are operational, and most other major subsystems are in the construction or installation phase. Exceptions are the rf structure (under development), the 5 MeV beam transport line (in engineering design), and the extraction beam line (in conceptual design). Our studies of the original candidate accelerating structure, the disk-and-washer, have led to the discovery of beam steering modes which render this structure unsuitable for the RTM without at least substantial further development beyond the scope of the project. The most promising alternate for meeting the design goal of CW operation at 1.5 MeV/m is the side-coupled structure. A shunt impedance of 80 MΩ/m has been measured in a test section of side-coupled structure at 2380 MHz, adequate cooling has been designed, and a 2.7 m long section of this design is under construction. The electron optics of the RTM have been studied in detail.Keywords
This publication has 4 references indexed in Scilit:
- End Magnet Design for the NBS-LASL CW MicrotronIEEE Transactions on Nuclear Science, 1981
- The NBS-LASL CW MicrotronIEEE Transactions on Nuclear Science, 1981
- Standing Wave High Energy Linear Accelerator StructuresReview of Scientific Instruments, 1968
- Theory of the alternating-gradient synchrotronAnnals of Physics, 1958