Abstract
It was recently conjectured by D. Page that if a quantum system of Hilbert space dimension $nm$ is in a random pure state then the average entropy of a subsystem of dimension $m$ where $m \leq n$ is $ S_{mn} = \sum^{mn}_{k=n+1}(1/k) - (m-1)/2n$. In this letter this conjecture is proved.

This publication has 0 references indexed in Scilit: