Protein structure comparison using the markov transition model of evolution.
- 1 October 2000
- journal article
- research article
- Vol. 41 (1) , 108-22
Abstract
A number of automatic protein structure comparison methods have been proposed; however, their similarity score functions are often decided by the researchers' intuition and trial-and-error, and not by theoretical background. We propose a novel theory to evaluate protein structure similarity, which is based on the Markov transition model of evolution. Our similarity score between structures i and j is defined as log P(j --> i)/P(i), where P(j --> i) is the probability that structure j changes to structure i during the evolutionary process, and P(i) is the probability that structure i appears by chance. This is a reasonable definition of structure similarity, especially for finding evolutionarily related (homologous) similarity. The probability P(j --> i) is estimated by the Markov transition model, which is similar to the Dayhoff's substitution model between amino acids. To estimate the parameters of the model, homologous protein structure pairs are collected using sequence similarity, and the numbers of structure transitions within the pairs are counted. Next these numbers are transformed to a transition probability matrix of the Markov transition. Transition probabilities for longer time are obtained by multiplying the probability matrix by itself several times. In this study, we generated three types of structure similarity scores: an environment score, a residue-residue distance score, and a secondary structure elements (SSE) score. Using these scores, we developed the structure comparison program, Matras (MArkovian TRAnsition of protein Structure). It employs a hierarchical alignment algorithm, in which a rough alignment is first obtained by SSEs, and then is improved with more detailed functions. We attempted an all-versus-all comparison of the SCOP database, and evaluated its ability to recognize a superfamily relationship, which was manually assigned to be homologous in the SCOP database. A comparison with the FSSP database shows that our program can recognize more homologous similarity than FSSP. We also discuss the reliability of our method, by studying the disagreement between structural classifications by Matras and SCOP.This publication has 0 references indexed in Scilit: