Classical model for bulk-ensemble NMR quantum computation

Abstract
We present a classical model for bulk-ensemble NMR quantum computation: the quantum state of the NMR sample is described by a probability distribution over the orientations of classical tops, and quantum gates are described by classical transition probabilities. All NMR quantum computing experiments performed so far with three quantum bits can be accounted for in this classical model. After a few entangling gates, the classical model suffers an exponential decrease of the measured signal, whereas there is no corresponding decrease in the quantum description. We suggest that for small numbers of quantum bits, the quantum nature of NMR quantum computation lies in the ability to avoid an exponential signal decrease.

This publication has 26 references indexed in Scilit: