Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channels model

Abstract
Observers were shown patterns composed of two textures in which each texture contained two types of elements. The elements were arranged in a striped pattern in the top and bottom regions and in a checked pattern in the center region. Observers rated the degree to which the three regions were seen as distinct. When the elements were squares or lines, perceived segregation resulting from differences in element size could be canceled by differences in element contrast. Minimal perceived segregation occurred when the products of the area and the contrast (areal contrasts) of the elements were equal. This dependence of perceived segregation on the areal contrasts of the elements is consistent with a simple model based on the hypothesis that the perceived segregation of the regions is a function of their differential stimulation of spatial-frequency channels. Two aspects of the data were not consistent with quantitative predictions of the model. First, as the size difference between the large and small elements increased, the ratings at the point of minimum perceived segregation increased. Second, some effects of changing the fundamental frequency of the textures were not predicted by the model. These discrepancies may be explained by a more complex model in which a rectification or similar nonlinearity occurs between two stages of orientation- and spatial-frequency-selective linear filters.

This publication has 34 references indexed in Scilit: