Compatibility of DAMA/LIBRA dark matter detection with other searches
Top Cited Papers
- 1 April 2009
- journal article
- Published by IOP Publishing in Journal of Cosmology and Astroparticle Physics
- Vol. 2009 (04) , 010
- https://doi.org/10.1088/1475-7516/2009/04/010
Abstract
The DAMA/NaI and DAMA/LIBRA annual modulation data, which may be interpreted as a signal for the existence of weakly interacting dark matter (WIMPs) in our galactic halo, are examined in light of null results from other experiments: CDMS, XENON10, CRESST I, CoGeNT, TEXONO, and Super-Kamiokande (SuperK). We use the energy spectrum of the combined DAMA modulation data given in 36 bins, and include the effect of channeling. Several statistical tools are implemented in our study: likelihood ratio with a global fit and with raster scans in the WIMP mass and goodness-of-fit (g.o.f.). These approaches allow us to differentiate between the preferred (global best fit) and allowed (g.o.f.) parameter regions. It is hard to find WIMP masses and couplings consistent with all existing data sets; the surviving regions of parameter space are found here. For spin-independent (SI) interactions, the best fit DAMA regions are ruled out to the 3σ C.L., even with channeling taken into account. However, for WIMP masses of ~ 8 GeV some parameters outside these regions still yield a moderately reasonable fit to the DAMA data and are compatible with all 90% C.L. upper limits from negative searches, when channeling is included. For spin-dependent (SD) interactions with proton-only couplings, a range of masses below 10 GeV is compatible with DAMA and other experiments, with and without channeling, when SuperK indirect detection constraints are included; without the SuperK constraints, masses as high as ~ 20 GeV are compatible. For SD neutron-only couplings we find no parameters compatible with all the experiments. Mixed SD couplings are examined: e.g. ~ 8 GeV mass WIMPs with an = ±ap are found to be consistent with all experiments. In short, there are surviving regions at low mass for both SI and SD interactions; if indirect detection limits are relaxed, some SD proton-only couplings at high masses also survive.Keywords
All Related Versions
This publication has 76 references indexed in Scilit:
- Review of Particle PhysicsPhysics Letters B, 2008
- Nuclear spin structure in dark matter search: The finite momentum transfer limitPhysics of Particles and Nuclei, 2006
- Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground LaboratoryPhysical Review D, 2005
- Effects of the Sagittarius Dwarf Tidal Stream on Dark Matter DetectorsPhysical Review Letters, 2004
- Calculating exclusion limits for weakly interacting massive particle direct detection experiments without background subtractionPhysical Review D, 2001
- Weakly interacting massive particle annual modulation signal and nonstandard halo modelsPhysical Review D, 2001
- Nuclear form factors for the scattering of weakly interacting massive particlesPhysics Letters B, 1991
- Dark matter detectionPhysics Reports, 1990
- Cosmic ray constraints on the annihilations of relic particles in the galactic haloPhysics Letters B, 1988
- Can scalar neutrinos or massive Dirac neutrinos be the missing mass?Physics Letters B, 1986