Comparing Models of Rapidly Rotating Relativistic Stars Constructed by Two Numerical Methods

Abstract
We present the first direct comparison of codes based on two different numerical methods for constructing rapidly rotating relativistic stars. A code based on the Komatsu-Eriguchi-Hachisu (KEH) method (Komatsu et al. 1989), written by Stergioulas, is compared to the Butterworth-Ipser code (BI), as modified by Friedman, Ipser and Parker. We compare models obtained by each method and evaluate the accuracy and efficiency of the two codes. The agreement is surprisingly good. A relatively large discrepancy recently reported (Eriguchi et al. 1994) is found to arise from the use of two different versions of the equation of state. We find, for a given equation of state, that equilibrium models with maximum values of mass, baryon mass, and angular momentum are (generically) all distinct and either all unstable to collapse or are all stable. Our implementation of the KEH method will be available as a public domain program for interested users.

This publication has 0 references indexed in Scilit: