Relative affinities of divalent polyamines and of their N-methylated analogs for helical DNA determined by sodium-23 NMR
- 30 July 1991
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 30 (30) , 7550-7559
- https://doi.org/10.1021/bi00244a026
Abstract
Interactions of divalent polyamines with double-helical DNA in aqueous solution are investigated by monitoring the decrease in 23Na NMR relaxation rates as NaDNA is titrated with H3N(+)-(CH2)m-+NH3, where m = 3, 4, 5, or 6. Analogous measurements are made for the same homologous series of methylated polyamines (methonium ions). The dependence of the 23Na relaxation rates on the amount of added divalent cation (M2+) is analyzed quantitatively in terms of a two-state model. The sodium ions are assumed to be in rapid exchange between a "bound" state, where they are close enough to DNA so that it affects their relaxation rate, and a "free" state in bulk solution, where their relaxation rate is the same as in solutions containing no DNA. The distribution of Na+ and M2+ between these states is described quantitatively in terms of an ion-exchange parameter: DM = (pMB)(1-pNaB)n/(pNaB)n(1-pMB), where pNaB and pMB are the fractions of Na+ and M2+ that are close enough to DNA to be considered bound (by the NMR criterion), and n is the number of sodium ions displaced from DNA by the binding of one M2+ ion. For each of the polyamines and methonium ions investigated here, equations derived from this two-state model yield acceptable fittings of the titration curves if roNa, the number of sodium ions bound per DNA phosphate when no competing cations are present, is assigned a value between 0.6 and 1.00. Within this range, changing the value assigned to roNa does change the best-fitted values of DM determined for these polyamines (DH) and for the methonium ions (DMe) but does not alter the following conclusions about the trends in these parameters. (1) For polyamines and methonium ions of the same m, DH exceeds DMe by factors that are significantly larger for m = 3 and 4 than for m = 5 and 6. (2) DH for m = 3 and 4 is larger than DH for m = 5 and 6. (3) DMe for m = 3 and 4 is smaller than DMe for m = 5 and 6.Keywords
This publication has 0 references indexed in Scilit: