Quisqualic Acid Modulates Kainate Responses in Cultured Cerebellar Granule Cells

Abstract
The activation of kainic acid and quisqualic acid receptors in cultured cerebellar granule cells stimulated the release of preaccumulated D-[3H]aspartate. The effect of kainate could be distinguished from that of quisqualate by its sensitivity to the antagonists kynurenic acid and 2,3-cispiperidine dicarboxylic acid. At a concentration of kainic acid (50 .mu.M) close to its half-maximal releasing effect, simultaneous addition of quisqualic acid (10-50 .mu.M) resulted in a significant dose-dependent inhibition of the kainate-induced component of D-[3H]aspartate release, which was monitored by the progressive decrease in sensitivity of the evoked release to kynurenic acid. In contrast, when kainic acid was used at a subeffective concentration (10 .mu.M), addition of low doses of quisqualate (2-5 .mu.M) resulted in a synergistic effect on D-[3H]aspartate release. Under these conditions, the effect of the two agonists was sensitive to kynurenic acid. Kainic acid (50-100 .mu.M) also caused a dose-dependent, kynurenic acid-sensitive accumulation of cyclic GMP (cGMP) in granule cell cultures. Quisqualic acid was, by itself, ineffective and prevented, in a dose-dependent manner, the kainate-induced cGMP formation (IC50 = 5 .mu.M). Finally, the guanylate cyclase activator sodium nitroprusside greatly enhanced cGMP formation but had no effect on D-[3H]aspartate release. Together, these results demonstrate the existence of complex interactions between quisqualic and kainic acids and indicate that the effects of the two glutamate agonists on D-[3H]aspartate release and on cGMP accumulation are independent.