Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Single-Walled Carbon Nanotube Material
Top Cited Papers
- 1 January 2004
- journal article
- research article
- Published by Taylor & Francis in Journal of Toxicology and Environmental Health, Part A
- Vol. 67 (1) , 87-107
- https://doi.org/10.1080/15287390490253688
Abstract
Carbon nanotubes represent a relatively recently discovered allotrope of carbon that exhibits unique properties. While commercial interest in the material is leading to the development of mass production and handling facilities, little is known of the risk associated with exposure. In a two-part study, preliminary investigations have been carried out into the potential exposure routes and toxicity of single-walled carbon nanotube material (SWCNT)—a specific form of the allotrope. The material is characterized by bundles of fibrous carbon molecules that may be a few nanometers in diameter, but micrometers in length. The two production processes investi-gated use-transition metal catalysts, leading to the inclusion of nanometer-scale metallic particles within unrefined SWCNT material. A laboratory-based study was undertaken to evaluate the physical nature of the aerosol formed from SWCNT during mechanical agitation. This was complemented by a field study in which airborne and dermal exposure to SWCNT was investigated while handling unrefined material. Although laboratory studies indicated that with sufficient agitation, unrefined SWCNT material can release fine particles into the air, concentrations generated while handling material in the field were very low. Estimates of the airborne concen-tration of nanotube material generated during handling suggest that concentrations were lower than 53μg/m3 in all cases. Glove deposits of SWCNT during handling were estimated at between 0.2 mg and 6 mg per hand.Keywords
This publication has 6 references indexed in Scilit:
- Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte CellsJournal of Toxicology and Environmental Health, Part A, 2003
- Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric studyJournal of Vacuum Science & Technology A, 2001
- Carbon Nanotubes: Synthesis, Properties, and ApplicationsCritical Reviews in Solid State and Materials Sciences, 2001
- Health Risks Associated with Inhaled Nasal ToxicantsCritical Reviews in Toxicology, 2001
- Novel Nanocarbons—Structure, Properties, and Potential ApplicationsAdvanced Materials, 1998
- C60: BuckminsterfullereneNature, 1985