Characteristics of Tornado-Like Vortices as a Function of Swirl Ratio: A Laboratory Investigation
Open Access
- 1 September 1979
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 36 (9) , 1755-1776
- https://doi.org/10.1175/1520-0469(1979)036<1755:cotlva>2.0.co;2
Abstract
The investigation of tornado vortex dynamics by means of a laboratory simulation is described. Based on observations from nature and an examination of the Navier-Stokes equations, a laboratory simulator of the Ward type has been constructed. This simulator generates various vortex configurations as a function of swirl ratio, radial Reynolds number and aspect ratio. Configurations which are described are 1) a single laminar vortex; 2) a single vortex with breakdown bubble separating the upper turbulent region from the lower laminar region; 3) a fully developed turbulent core, where the breakdown bubble penetrates to the bottom of the experimental chamber; 4) vortex transition to two intertwined helical vortices; and 5) examples of higher order multiple-vortex configurations that form in the core region. Hot-film anemometry measurements of the magnitude of the velocity vector and inflow (swirl) angle have been obtained in a sequence of flows characterized by progressively increasing values of swirl... Abstract The investigation of tornado vortex dynamics by means of a laboratory simulation is described. Based on observations from nature and an examination of the Navier-Stokes equations, a laboratory simulator of the Ward type has been constructed. This simulator generates various vortex configurations as a function of swirl ratio, radial Reynolds number and aspect ratio. Configurations which are described are 1) a single laminar vortex; 2) a single vortex with breakdown bubble separating the upper turbulent region from the lower laminar region; 3) a fully developed turbulent core, where the breakdown bubble penetrates to the bottom of the experimental chamber; 4) vortex transition to two intertwined helical vortices; and 5) examples of higher order multiple-vortex configurations that form in the core region. Hot-film anemometry measurements of the magnitude of the velocity vector and inflow (swirl) angle have been obtained in a sequence of flows characterized by progressively increasing values of swirl...Keywords
This publication has 0 references indexed in Scilit: