Differential cross section forn-pelastic scattering in the angular region 50°<θ*<180° at 459 MeV

Abstract
The differential cross section for n-p elastic scattering at 459 MeV in the c.m. angular region 50°<θ*<180° has been measured with high statistical precision and good relative accuracy. The uncertainty in the absolute normalization (based on the simultaneously measured yield of deuterons from the npdπ0 reaction) was initially estimated to be ∼7%. The results agree well with back-angle data obtained independently at LAMPF but less well with results from Saclay and the Princeton-Pennsylvania Accelerator and, except for a normalization difference of 10%, are fairly well represented by a phase-shift fit. The pole-extrapolation method of Chew was used to extract the pion-nucleon coupling constant f2 from the back-angle portion of the data. The value obtained, f2=0.069, is somewhat smaller than the values 0.0735–0.0790 obtained from analyses of pion-nucleon scattering, tending to confirm the need for an upward renormalization of the angular distribution by ∼10%.