Manganese‐Substituted Carbonic Anhydrase as a New Peroxidase

Abstract
Carbonic anhydrase is a zinc metalloenzyme that catalyzes the hydration of carbon dioxide to bicarbonate. Replacing the active‐site zinc with manganese yielded manganese‐substituted carbonic anhydrase (CA[Mn]), which shows peroxidase activity with a bicarbonate‐dependent mechanism. In the presence of bicarbonate and hydrogen peroxide, (CA[Mn]) catalyzed the efficient oxidation of o‐dianisidine with kcat/KM=1.4×106 m−1 s−1, which is comparable to that for horseradish peroxidase, kcat/KM=57×106 m−1 s−1. CA[Mn] also catalyzed the moderately enantioselective epoxidation of olefins to epoxides (E=5 for p‐chlorostyrene) in the presence of an amino‐alcohol buffer, such as N,N‐bis(2‐hydroxyethyl)‐2‐aminoethanesulfonic acid (BES). This enantioselectivity is similar to that for natural heme‐based peroxidases, but has the advantage that CA[Mn] avoids the formation of aldehyde side products. CA[Mn] degrades during the epoxidation limiting the yield of the epoxidations to <12 %. Replacement of active‐site residues Asn62, His64, Asn67, Gln92, or Thr200 with alanine by site‐directed mutagenesis decreased the enantioselectivity demonstrating that the active site controls the enantioselectivity of the epoxidation.

This publication has 60 references indexed in Scilit: