Functional Genomics of Innate Host Defense Molecules in Normal Human Monocytes in Response toAspergillus fumigatus

Abstract
Aspergillus fumigatusinduces the release of innate immune-related molecules from phagocytic cells early in the course of infection. Little is known, however, about the complex expression profiles of the multiple genes involved in this response. We therefore investigated the kinetics of early gene expression in human monocytes (HMCs) infected with conidia ofA. fumigatususing DNA microarray analysis. Total RNA from HMCs at 0, 2, 4, and 6 h was extracted, linearly amplified, hybridized onto Affymetrix HG133 Plus 2.0 gene chips, and analyzed with an Affymetrix scanner. Changes in gene expression were calculated as a ratio of those expressed by infected versus control HMCs.Aspergillus fumigatusinduced differential regulation of expression in 1,827 genes (P< 0.05). Genes encoding cytokines and chemokines involved in host defense againstA. fumigatus, including interleukin-1β (IL-1β), IL-8, CXCL2, CCL4, CCL3, and CCL20, as well as the opsonin long pentraxin 3, were up-regulated during the first 2 to 6 h, coinciding with an increase in phagocytosis. Simultaneously, genes encoding CD14, ficolin1, and MARCO were down-regulated, and genes encoding IL-10 and matrix metalloproteinase 1 were up-regulated. Up-regulation of the genes encoding heat shock proteins 40 and 110 and connexins 26 and 30 may point to novel molecules whose role in the pathogenesis of aspergillosis has not been previously reported. Verification of the transcriptional profiling was obtained for selected genes by reverse transcription-PCR and enzyme immunoassay. Thus,A. fumigatusconidia induced a coordinated expression of genes important in host defense and immunomodulation.