Modelling what users see when they look at images: a cognitive viewpoint

Abstract
Analysis of user viewing and query-matching behavior furnishes additional evidence that the relevance of retrieved images for system users may arise from descriptions of objects and content-based elements that are not evident or not even present in the image. This investigation looks at how users assign pre-determined query terms to retrieved images, as well as looking at a post-retrieval process of image engagement to user cognitive assessments of meaningful terms. Additionally, affective/emotion-based query terms appear to be an important descriptive category for image retrieval. A system for capturing (eliciting) human interpretations derived from cognitive engagements with viewed images could further enhance the efficiency of image retrieval systems stemming from traditional indexing methods and technology-based content extraction algorithms. An approach to such a system is posited.

This publication has 55 references indexed in Scilit: