Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis
- 1 May 1992
- journal article
- Published by Wiley in Biotechnology & Bioengineering
- Vol. 39 (11) , 1161-1170
- https://doi.org/10.1002/bit.260391113
Abstract
The processes leading to bacterial colonization on solidwater interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless‐steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m−2. The surface roughness varied among the substrata from 0.002 μm (for silicon) to 0.015 μm (for copper). Surface free energies varied from 25.1 dynes cm−1 for silicon to 31.2 dynes cm−1 for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa. The adsorption rate coefficient varried by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell‐containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.Keywords
This publication has 26 references indexed in Scilit:
- Control of mixed microbial cultures via specific cell adhesionBiotechnology & Bioengineering, 1989
- Determination of population balances in a mixed culture by specific cell adhesionBiotechnology Techniques, 1989
- Activity of Pseudomonas aeruginosa in biofilms: Steady stateBiotechnology & Bioengineering, 1984
- Cellular reporoduction and extracellular polymer formation by Pseudomonas aeruginosa in continuous cultureBiotechnology & Bioengineering, 1984
- Adhesion of Leptospira at a solid-liquid interface: a modelArchiv für Mikrobiologie, 1984
- Adhesion to Inanimate SurfacesPublished by Springer Nature ,1984
- The deposition of bacterial cells from laminar flows onto solid surfacesBiotechnology & Bioengineering, 1983
- Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicityFEMS Microbiology Letters, 1980
- Fine particle deposition in laminar flow through parallel-plate and cylindrical channelsJournal of Colloid and Interface Science, 1976
- Dispersion-Polar Surface Tension Properties of Organic SolidsThe Journal of Adhesion, 1970