Abstract
Adult peripheral neurons can regenerate after axonal damage. Large changes in gene expression occur in the cell bodies of these axotomized neurons, including decreases in expression of a number of proteins used for synaptic transmission and increases in expression of a number of proteins involved in regeneration. The signals that trigger these changes are just beginning to be elucidated. One characteristic of axotomized sympathetic, sensory, and motor neurons is that they increase expression of two neuropeptides, vasoactive intestinal peptide and galanin. These peptides may play important roles in the survival and regeneration of axotomized neurons deprived of their target-derived trophic factors. Recent studies have demonstrated two important signals in the induction of these peptides in sympathetic neurons: one is the release of leukemia inhibitory factor (LIF) by non-neuronal cells in the vicinity of the injured neurons and the other, the removal of target-derived nerve growth factor (NGF). Furthermore, there is a synergistic interaction between these two events whereby the removal of NGF alters the responsiveness of neurons to LIF. Future efforts will hopefully determine the extent to which LIF and NGF signal other aspects of the cell body response and the mechanisms that underlie these actions. NEUROSCIENTIST 3:176-185, 1997

This publication has 58 references indexed in Scilit: